Biology and Networks:

Bio Inspired Networks and Network Inspired Bio

Tatsuya Suda
Professor
Information and Computer Science
University of California, Irvine
suda@ics.uci.edu
Netresearch.ics.uci.edu

Outline

• Bio Inspired Networks (applying bio concepts/mechanisms to nets)
 – Bio Networking Architecture
• Network Inspired Bio (applying insights from nets to create a new bio net systems)
 – Molecular communication
• Bio and Grid

Part 1: Bio Inspired Networks

Bio-Net:
An Evolvable Architecture for Adaptive Network Services

Motivation

• Network services/applications need to be
 – scalable, adaptable, survivable/available, simple to design/maintain
• Observation:
 – large scale biological systems have desirable features
• So, apply biological concepts/mechanisms
Emergent Behavior

- Biological systems
 - (useful) group behavior emerges from local interaction of individuals with simple behaviors

- In Bio Net
 - Application emerges from local interaction of cyber-entities with simple behaviors

Emergent Behavior in Bio-Net

- individuals = cyber-entities (agents/objects) in Bio-Net
 - abstraction of various system components
 - service components (e.g., program code, flight reservation service component), resource, user
 - autonomous with simple behaviors
 - replication, reproduction, migration, death, etc.
 - makes its own decision, according to its own behavioral policy

Evolution and Adaptation

- CE behavior: energy exchange
 - gain energy from a cyber-entity (e.g., a user) in exchange for performing a service
 - expend energy to receive service from other cyber-entities (e.g., to use network/computing resources)
 - can be used as a natural selection mechanism
 - death from energy starvation
 - tendency to replicate/reproduce from energy abundance

- Biological systems
 - individuals adjust their behaviors to environmental changes
 - key components
 - diversity from mutations and crossovers during replication/reproduction
 - natural selection keeps entities with beneficial features alive and increase reproduction probability
Evolution and Adaptation in Bio-Net

- **Bio Net**
 - cyber-entities (CEs) adjust their behaviors to environmental changes

- **Key components**
 - diversity
 - A CE behavior is implemented by different policies
 - human designers can introduce diversity in CE behaviors
 - CEs replicate/reproduce with mutation/crossover in behavior policies
 - natural selection (using energy)
 - death from energy starvation
 - tendency to replicate/reproduce from energy abundance

Adaptation at CE Level

- Cyber-entity behaviors implemented
 - Replication
 - If current energy level > threshold, then create a new entity of same type
 - Death
 - if current energy level = 0, then, die
 - Migration
 - migrate towards source of energy (user requesting service)
 - avoid coexisting on a node with same entity

Energy Seeking Entity (Simulation 1)

- Entity 1: \(w_1 = 0.5, w_2 = 0.5, \text{agress} = 4 \)
- Entity 2: \(w_1 = 0.425, w_2 = 0.575, \text{agress} = 2.25 \)
- Entity 3: \(w_1 = 0.575, w_2 = 0.45, \text{agress} = 4.5 \)
Entity 1: $w_1 = 0.5$, $w_2 = 0.5$, aggress = 4
Entity 2: $w_1 = 0.425$, $w_2 = 0.575$, aggress = 2.25
Entity 3: $w_1 = 0.575$, $w_2 = 0.45$, aggress = 4.5
Vision

- No central or coordinating entity exists.
- A large number of CEs (created by millions of millions of Internet users), autonomously moving/replicating,
- CEs making relationships with other CEs providing related services,
- diverse behavior policies getting created, good behaviors survive, bad ones die, making system flexible, adaptable and evolvable
- Let the Internet live its own life.

Some Thought on Bio Inspired Nets

- A large number of bio inspired network research
 - Ant routing
 - Ants find a route following strength of pheromone
 - Immune system based intruder detection
 - Immune system finds shapes that are not similar to self
 - Etc, etc

- “Bio inspired nets” at this point seems to be just an analogy between bio world and nets

- No systematic approach to decide at level analogy should be made
 - Molecular level
 - Protein level
 - Single cell organism level
 - Multi-cell organism level
 - Insect level
 - Human level
 - Human society level
• No systematic approach to decide at level analogy should be made
 – Molecular level
 – Protein level
 – Single cell organism level (immune system)
 – Multi-cell organism level
 – Insect level (ant routing)
 – Human level
 – Human society level (bio net)

• No systematic approach to decide how accurate analogy need to be
 – Ants emit different types of pheromone
 – Queen ants, regular ants; being ignored
 – Bio systems are usually more complex than analogy that has been applied in networks

• Our approaches in bio inspired net seem to be ad hoc

• We need to be clear on
 – what our “target” system is
 • A network?
 • A router?
 • ?
 – what features we want a “target” system to have?
 • Robustness?
 • Scalability?
 • ?

• We need to consider multilevel analogy
 – Human society ------ ???
 – Individuals ------------ ???
 – Organs ---------------- ???
 – Cells ------------------ ???
 – Proteins ---------------- ???
 – Atoms ------------------ ???

• Bio inspired mechanism at one level will lead to some behavior at a higher level
• We need to consider multilevel analogy
 – Human society ------ network applications (bio net)
 – Individuals --------- cyber entities (bio net)
 – Organs -------------- ???
 – Cells ---------------- ???
 – Proteins -------------- ???
 – Atoms ---------------- ???

• Bio inspired mechanism at one level will lead to some behavior at a higher level

• We need to consider multilevel analogy
 – Human society ------ ???
 – Individuals ----------- ant routing
 – Organs -------------- ???
 – Cells ---------------- ???
 – Proteins -------------- ???
 – Atoms ---------------- ???

• Bio inspired mechanism at one level will lead to some behavior at a higher level

• We need to consider multilevel analogy
 – Human society ------ ???
 – Individuals ----------- ???
 – Organs -------------- ???
 – Cells ---------------- ???
 – Proteins -------------- ???
 – Atoms ---------------- ???

• Bio inspired mechanism at one level will lead to some behavior at a higher level

• We need to consider multilevel analogy
 – Human society ------ ???
 – Individuals ----------- ???
 – Organs -------------- ???
 – Cells ---------------- ???
 – Proteins -------------- ???
 – Atoms ---------------- ???

• Bio inspired mechanism at one level will lead to some behavior at a higher level
• We need to consider multilevel analogy
 – Human society ------ ???
 – Individuals ----------- ???
 – Organs ---------------- ???
 – Cells ------------------ ???
 – Proteins --------------- ???
 – Atoms ----------------- ???

• Bio inspired mechanism at one level will lead to some behavior at a higher level

• We need to be clear on
 – what our “target” system is
 • A network?
 • A router?
 • ?
 – what features we want a “target” system to have?
 • Robustness?
 • Scalability?
 • ?
Part 2: Net Inspired Bio

Molecular Communication: A New Paradigm for Communication among Biological Nanomachines

- Biological nanomachines
 - nano-scale or molecular scale objects that are capable of performing simple tasks

Communication among Biological Nanomachines

- A new paradigm for nano scale communication
 - Among biological nanomachines

Figure: “Protonic Nanomachin Project”, Prof. Namba at Osaka University: http://www.npn.jst.go.jp/index.html

- Biological nanomachines (in bio world)
 - Cells
 - Bacteria
 - Molecular Motors

All figures: Alberts, Molecular Biology of the Cell
 Biological nanomachines (artificially created)
- logic gates made of biological components
 - If both substrate and effector exist, product produced
 - If no effector or no substrate, substrate remains unchanged

Nano-Scale Communication in Bio World

- Nano/micro-scale communication in biological systems
 - Within a cell (vesicles transported by molecular motors)

Microtubule Rails
- Polymer on which motors walk
- Formed through dynamic Instability
 - Polymerize and depolymerize relative to tubulin concentration

Molecular Motors
- Kinesin
 - Consumes ATP energy to move along microtubule
 - Binds cargo according to tail domain
• Nano/micro-scale communication in biological systems
 – Within a cell (vesicles transported by molecular motors)
 - A vesicle transported by a kinesin motor toward the periphery of the cell
 - A vesicle transported by a dynein motor toward the center of the cell

• Nano/micro-scale communication in biological systems
 – Between cells (Cells coordinate through calcium signaling)
 - Gap junction channel
 - Intracellular signals (e.g., IP₃)
 - Extracellular signals (e.g., ATP)

Stimuli

Gap junction channel
Intracellular signals (e.g., IP$_3$)

Extracellular signals (e.g., ATP)

Gap junction channel

• How do biological nanomachines communicate in the bio world?
 – Using molecules (ions, proteins, etc)
• So, let’s have our biological nanomachines communicate using molecules

Molecular Communication

• As the first step, we are researching
• Goal
 – Achieve communication between biological nanomachines
 – Over communication distance of nano/micro scale
• How
 – By sending and receiving molecules (such as proteins, ions, DNAs) as an information carrier

• A receiver biochemically reacts to incoming molecules
 – Bio-chemical reaction, state = information
 • Nanomachines cannot “interpret” abstract information
Simplest Molecular Communication System: An Example

1. **Encoding**
 - Senders (nanomachines)
 - Information Source
 - Information molecules (Proteins, ions, DNAs, etc)

2. **Sending**
 - Information molecules

3. **Propagation (directional)**

4. **Receiving (selective)**
Simplest Molecular Communication System: An Example

1. **Encoding**
 - Information molecules (Proteins, ions, DNAs, etc)

2. **Sending (selective)**
 - Senders (nanomachines)

3. **Propagation (directional)**

4. **Receiving (selective)**
 - Receivers (nanomachines)

5. **Decoding**

An Example System Component: A Sender

- Artificially synthesized cell

- Genetically altered mutant cell

- Encoding by controlling density of emitting molecules

- Non-spontaneous reaction
 - Sender nanomachine
 - Stable: Concentration LOW

- Spontaneous reaction
 - Sender nanomachine
 - Instable: Concentration HIGH

- Spontaneous reaction
 - Sender nanomachine
 - Stable: Concentration LOW

Decomposition
An Example System Component: Free Diffusion based Propagation Direction Control

1. **Encoding**

2. **Sending**

3. **Propagation (directional)**

Information Source

- Information molecules (Proteins, ions, DNAs, etc)

Senders (nanomachines)

Receivers (nanomachines)

An Example System Component: Cell network based Propagation Direction Control

1. **Encoding**

2. **Sending**

3. **Propagation (directional)**

Information source

- Information molecules (Proteins, ions, DNAs, etc)

Senders (nanomachines)

Receivers (nanomachines)

An Example System Component: Cell network based Propagation Direction Control

1. **Encoding**

2. **Sending**

3. **Propagation (directional)**

Information source

- Information molecules (Proteins, ions, DNAs, etc)

Senders (nanomachines)

Receivers (nanomachines)
- amplifying signals

CICR (Calcium Induced Calcium Release)

- Dynamic switching
 - Apply external signals to phosphorylate connexins.

An Example System Component:
Molecular Motor based Propagation Direction Control

1. Encoding

2. Sending

3. Propagation (directional)

Information source

Information molecules
(Proteins, ions, DNAs, etc)

An Example System Component:
Molecular Motor based Propagation Direction Control

1. Encoding

2. Sending

3. Propagation (directional)

Information source

Information molecules
(Proteins, ions, DNAs, etc)
An Example System Component:
Molecular Motor based Propagation Direction Control

1. **Encoding**

2. **Sending**

3. **Propagation (directional)**

Information source

- Information molecules (Proteins, ions, DNAs, etc)

- Senders (nanomachines)

- Receivers (nanomachines)

- Self-organizing creation of a rail molecule network

Note: The diagrams illustrate the process of encoding, sending, and propagating information molecules in a molecular motor-based system. The self-organizing creation of a rail molecule network is highlighted as a key component.
An Example System Component: *A Receiver*

- An artificially synthesized cell

 - Reception
 - Using artificial receptors
 - Liposome-liposome merger

- Genetically altered mutant cell

 - Selective reception
 - Only right receivers accept information

Decode information: different biochemical reactions
• Selective reception
 – Only right receivers accept information

5' 3'

TACTTTATTTTGGTTTTATTTCATTTTGTTTA

ATGAAATAAAACCAAAATAAAGTAAAACAAAT

3' 5'

5' 3'

TACTTTATTTTG

ATGAAATAAAACCAAAATAAAGTAAAACAAAT

3' 5'

Replacement of DNA hybridization

Carrier molecule

Information molecule A

Loading of an Information Molecule

Unloading of an Information Molecule
An Example System Component:
Information Encoding

- Encode information onto
 - Types of molecules
 - Send X (and Y) to cause a bio chemical reaction to recreate the desired state at a receiver
 - Send hormone X to control behavior of receiving cells (e.g., upon receiving insulin, a cell uptakes glucose)
 - Send a DNA (or a artificially created DNA) to create a protein at a receiver

- Frequency/oscillation encapsulated in a vesicle
 - Biological cells generate various types of waves with different frequencies
 - Periodic (unstable) chemical reaction

```
Ca2+ Transporter
Belousov-Zhabotinsky Reaction
```
• Encoding of a program

• Encoding of a program

• Encoding of a program

• Encoding of a program
System Characteristics

• A generic transport system
 – A molecule transport system independent of applications

• A communication system that is
 – Autonomous (i.e., no human control)
 – (but may be slow and probabilistic)

Applications

• New Biological Computing (a new approach to problem solving)
 – Program simple behavior rules into biological nanomachines
 – They solve large scale, non-traditional computing problems (e.g., a maze, global weather simulation prediction) through collaboration and communication

• Molecular communication
 – New paradigm
 – New research area
 – A lot to investigate
Part 3: Bio and Grids

- Two ways for Grid and Bio to work together
 - Grid for Bio
 - Grid to support bio research
 - Bio Inspired Grids
 - applying bio concepts/mechanisms to Grid to create Grid with desirable features

Grid for Bio Research

- Grid can support bio research
 - Drug creation/delivery
 - Binding of various types/shapes of proteins
 - Molecular dynamics simulations
 - Multi level simulations (atom, protein, cells, etc)
 - Disease epidemic simulation
 - How disease spread
 - Health monitoring
 - Communicating sensors imbedded in a human body

- By providing
 - High computing power
 - Federated data base and knowledge base
 - Visualization tools
 - A grid of sensors that work as a computer
Bio Inspired Grids

• Bio inspired grid
 – Apply bio concepts/mechanisms to provide desirable features to grids
 • Flexible
 • Robust
 • Scalable

• Bio has a huge implication in Grid and networks
 – Need a lot more research

• Thanks!